
ARM-based SoC
with Loosely coupled type hardware RTOS

for industrial network systems
Naotaka Maruyama∗†, Takuya Ishikawa†, Shinya Honda†, Hiroaki Takada† and Katsunobu Suzuki‡

∗KERNELON Silicon Inc., 520-6, Fujisawa, Fujisawa-shi, 251-0052, Japan
Email: maruyama na@kernelon.com

†Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
Email: {t ishikawa, honda, hiro}@ertl.jp

‡2nd Solution Business Unit, Renesas Electronics Corp., 1753, Simonumabe, Nakahara-ku, Kawasaki-shi, 211-8668, Japan
Email: katsunobu.suzuki.fn@renesas.com

Abstract—Many different types of high-speed networks are
employed in industrial systems, which affect real-time processing,
such as motor control of industrial controllers, because of the
increased CPU load due to network protocol processing. In this
study, we propose a system-on-a-chip (SoC) architecture for
industrial controllers to reduce the network protocol processing
load. The proposed architecture adopts a RTOS in hardware
in order to accelerate RTOS execution because the RTOS is
frequently called in protocol processing and commonly used in
many protocols. Existing hardware RTOSs require a purpose-
built core which has a special interface to connect with the
hardware RTOS in a tightly coupled manner. However, ARM
processors are required in many industrial systems. We man-
ufactured a SoC for Industrial controllers using the proposed
architecture and it is the world’s first SoC with hardware RTOS,
and it is commercially available. The results of our experimental
evaluations showed that the API execution time of the proposed
architecture was 1.4–2.9 times faster and the UDP/IP throughput
of the proposed architecture was 1.67 times faster compared with
that when using a conventional software RTOS.

I. INTRODUCTION

In factories, low speed networks such as controller area
networks (CANs) have been used as industrial networks.
However, high-speed networks such as 10/100/1000 Mbps
Ethernet have been employed recently. Industrial controllers
(IndCntlrs), which control industrial devices such as motors,
require real-time processing. However, the deployment of
high-speed network systems affects the real-time processing of
IndCntlrs. High-speed network protocol processing occupies a
large amount of CPU time and generates frequent interrupts,
thus it is necessary to decrease the network protocol processing
load of IndCntlrs.

In contrast to office networks, industrial networks are re-
quired to meet real-time constraints. This requires periodic and
deterministic data transfer to ensure synchronization among
the IndCntlrs connected by the network. An Ethernet is
adopted as a physical layer in industrial network protocol
stacks but many protocols, such as PROcess FIeld NET-
work (PROFINET), Ethernet industrial protocol (EtherNet/IP),
ModbusTCP, and Ethernet for control automation technology

(EtherCAT), have been proposed for use as the upper layer
of industrial network protocol stacks to satisfy real-time con-
straints[14]. Therefore, multi-protocol support is required for
IndCntlrs. Furthermore, improved real-time processing is also
required to satisfy the real time constraints.

The adoption of ARM cores is required for IndCntlr because
users want to utilize the properties of software that have
already been developed and they need to retain the same in-
tegrated development environments. Furthermore, ARM cores
provide scalability because they have many lineups and they
are also reliable due to the fact they have been implemented
in a huge number of embedded systems throughout the world.
For these reasons, major semiconductor manufacturers have
moved their products from proprietary cores to ARM cores.

Low power consumption and low costs are important be-
cause industrial systems comprise a large number of IndCntlrs,
which are connected via a network.

As mentioned above, the requirements for industrial net-
work systems are: (1) decreasing the load of network proto-
col processing, (2) improved real-time processing, (3) multi-
protocol support, (4) adoption of ARM cores, and (5) low costs
and low power consumption.

One approach that satisfies requirements (1) and (2) is
to adopt a network protocol offload engine. However, to
satisfy requirement (3), the engines have to be designed and
implemented for all protocol types. Furthermore, this approach
lacks flexibility, needs a greater silicon area in the SoC, and
is more expensive; thus, it is impractical. Another approach is
to increase the clock rate of the core. However, requirement
(5) is not satisfied because the system has high costs and high
power consumption.

The purpose of the present study is to propose an archi-
tecture for a SoC for IndCntlrs that satisfy the requirements
mentioned above and to manufacture the SoC. We satisfied
the requirements by implementing a RTOS in hardware. The
RTOS APIs are invoked frequently during protocol processing
in any type of protocol. Thus, a large amount of CPU time is
consumed by RTOS execution during the protocol processing.

Registers
Save Mem.

Core
ARM
Core

Data
RAM

Data
RAM

ARTESSO
HWRTOS

ARTESSO
HWRTOS

System Bus System Bus

LC-HWRTOSTC-HWRTOS

Processor
Register Link

Contents of ProcReg are

switched by the HWRTOS

and saved in the Registers

Save Memory.

Contents of ProcReg are

switched by the software and

saved in the Data RAM.

Fig. 1. Coupling types for the HWRTOS

Therefore, if a RTOS is implemented in hardware and the CPU
time occupation by RTOS is reduced, the protocol processing
load can be reduced. Thus, requirement (1) is satisfied. Re-
quirement (2) is also satisfied because reducing the RTOS
overheads also decreases the interrupt response time. This
method also satisfies requirement (3) because the hardware
RTOS is commonly used in many type of protocols, thus it
decreases the processing load for many type of protocols.
Furthermore, the method satisfies requirement (5) because
it does not require an increase in the core performance. In
this study, we refer to ”RTOS implemented in hardware” as
HWRTOS and ”RTOS implemented in software” as SWRTOS.

As shown in Fig.1, there are two methods for connecting
a core with a HWRTOS. One is a tightly coupled type of
HWRTOS (TC-HWRTOS) and the other is a loosely coupled
type of HWRTOS (LC-HWRTOS). Requirement (4) is satis-
fied with LC-HWRTOS, as mentioned in Section II, thus we
adopted the LC-HWRTOS.

The main contributions of this study are as follows.
1. Proposal of a LC-HWRTOS architecture for IndCntlr.
2. Proposal of improvement of performance by parallel

execution of a core and a HWRTOS.
3. Design and manufacture of a SoC for IndCntlrs.
4. Evaluation of the RTOS performance and network

throughputs of both LC-HWRTOS and SWRTOS on the SoC.
The remainder of this paper is organized as follows. The

HWRTOS architecture for IndCntlrs is described in Section
II. Section III provides details of the LC-HWRTOS. Section
IV explains the architecture of the SoC and the performance
evaluations are presented in Section V. Related work is pre-
sented in Section VI and Section VII concludes this study. The
Appendix describes our previous development system, original
ARTESSO system[12]. The HWRTOS that we developed is
referred to as ARTESSO HWRTOS.

II. HWRTOS ARCHITECTURE FOR INDCNTLR

This section describes why the LC-HWRTOS is adopted to
satisfy requirement (4).

The following are the combinations of four cores and RTOS
types for the IndCntlr SoC.

(A) HWRTOS + purpose-built core (TC-HWRTOS)
(B) HWRTOS + modified ARM core (TC-HWRTOS)
(C) HWRTOS + ARM core (LC-HWRTOS)
(D) SWRTOS + ARM core (SWRTOS)

The following explains the TC-HWRTOS and LC-
HWRTOS as shown in Fig.1. In TC-HWRTOS, the core
has the Processor Register Link, which is a special interface

TABLE I
Different combinations of RTOSs and cores

Combination Type (A) (B) (C) (D)

RTOS TC-HWRTOS LC-HWRTOS SWRTOS

Core Purpose-build
ARM

ARM

API execution time Low Middle High

Available Un-available

Available Un-available

Core Reliability Middle High

Core Scalability No Low Yes

High Middle Low

Standard Tools Unusable Usable

LSI development cost Middle High Middle Low

for calling an API and for switching the contents between
the Register Save Memory and the internal registers of the
core. The internal registers comprise a program counter, stack
pointer, flag register, and general-purpose registers. In the
present study, the core internal registers are referred to as
ProcReg. The contents of the ProcReg are kept in the Register
Save Memory on a task-by-task basis. Thus, all API functions,
including context switching, are implemented in hardware.
Therefore, in TC-HWRTOS, the execution time is quite fast,
although a purpose-built core has to be used. As mentioned in
the Appendix, the original ARTESSO system is configured as
a TC-HWRTOS and it belongs to type (A). (B) is configured as
a TC-HWRTOS with an ARM core, thus the ARM core needs
to be modified to provide a special interface with ARTESSO
HWRTOS. However, the scalability and reliability of the core
are lower than formal ARM products since it is modified.

In LC-HWRTOS, the HWRTOS is implemented on the sys-
tem bus of the core, thus the core can invoke an API through
the system bus and the core does not need to be modified
with a special interface. Therefore, the API execution is quite
fast, although context switching is executed by software in the
same manner as SWRTOS.

Table I shows the advantages and disadvantages of the each
combination. (C) is configured as a LC-HWRTOS with an
ARM core. (D) is a conventional SWRTOS system.

The following describes comparison of the API execution
sequence for each RTOS type. Fig.2 (a) shows the sequence
without context switching. In TC-HWRTOS, after invoking
an API, the HWRTOS executes the API function and the task
restarts after completion. In contrast to the TC-HWRTOS, the
LC-HWRTOS requires a pre-procedure to call APIs and a
post-procedure to obtain the result value, because arguments
and a return value of the API are handed over using registers in
LC-HWRTOS, which are deployed between the core and the
ARTESSO HWRTOS, as mentioned in Section III, whereas
they can be handed over using ProcReg in TC-HWRTOS.
Fig.2 (b) shows the API function sequence with context
switching. The LC-HWRTOS requires a context-switching
process based on software in addition to the pre- and post-
procedures. The software used to call the RTOS, such as pre-
and post-procedures, is called a RTOS driver.

To satisfy requirement (4), (B) or (C) must be selected. The
execution of APIs by (B) is faster than that by (C). However,
the scalability and the reliability are lower than formal ARM,

Core CoreCoreHWRTOS HWRTOSHWRTOS

TC-HWRTOS SWRTOSLC-HWRTOS
In

v
o

k
e

a
n
 A

P
I

In
v
o

k
e

a
n
 A

P
I

Task A
Running

Task A
Running

Task A

Running

Task A

Running

Pre-API
Process

Post-API
Process

Task A
Running

Task A
Running

t t

(a) API without context switch

Task A
Running

Context

Switch

Context

Switch

Task B
Running

Context
Switch

(b) API with context switch

t t t t

Task A
Running

Task B
Running

Pre-API
Process

Post-API
Process

API
Process

API
Process

Task A
Running

Task B
Running

Core CoreCoreHWRTOS HWRTOSHWRTOS

TC-HWRTOS SWRTOSLC-HWRTOS

API
Process

API
Process

API
Process

API
Process

Fig. 2. API function sequence

ARM Core

Data RAM

A
H

B

Core Interrupt

Event Control Block

Interrupt
Controller

Semaphore Control Block

Mail Box Control Block

Command
Register

Argument
Register

Result
Register

M
a

in
 C

o
n

tr
o

ll
e

r
(M

C
)

S
e

le
c

to
r

V
ir

tu
a

l
Q

u
e

u
e

ARTESSO HWRTOSAAI

Task Management Block

Req_API

API_ID

Interrupt 1

Interrupt k

Hold

Intercept

Held

Intercepted

for Task 1

for Task 2

for Task m

Task Control
Block

RSM

Control

Processor
Register Link

Fig. 3. LC-HWRTOS for the IndCntlr SoC

and development cost is high in (B). The core availability and
real-time response in (C) are improved compared with (D)
because all of the RTOS functions are executed by hardware,
except for context switching. Based on these considerations,
we selected (C), the LC-HWRTOS, as the RTOS for the
IndCntlr SoC.

III. LC-HWRTOS FOR THE INDCNTLR SOC

A. Architecture of the LC-HWRTOS

Fig.3 shows the architecture of the IndCntlr SoC based
on the LC-HWRTOS method. The original ARTESSO sys-
tem was designed based on the TC-HWRTOS, and the LC-
HWRTOS of this study was modified the original ARTESSO
system. The modifications are as follows. A new module,
ARTESSO AHB Interface (AAI) is implemented, which per-
mits the ARM core to access the ARTESSO HWRTOS
through the AHB. AHB stands for advanced high-performance
bus and is ARM system bus. The AAI includes the ”Command
Register,” ”Argument Registers,” and ”Result Register.” The
core accesses these registers through the AHB to invoke an
API and to obtain the return value of the API. The Argument
Registers and Result Register are also accessed from the Main

RTOS Driver

User
Functions

(a)

(b)

(c)

(e)

(f)(d)

Write
API ID

Write
Argu.

Read
Result

Poll Result
Reg. Context Switch

API Process

Result

Req_API

MC

Result Reg.

Task A Task B

Fig. 4. API call sequence in LC-HWRTOS

Controller (MC). The MC is modified to connect with the AAI
and to implement new functions, as described in subsection C.

The following modules are same as those in the original
ARTESSO system. The Task Control Block maintains the
management data related to all of the tasks, such as the ”cur-
rent state” and ”task priority.” The Virtual Queue implements
a great deal of queues in small hardware and provides fast
queue operations. The Event Control Block, the Semaphore
Control Block, and the Mail Box Control Block maintain
and manage the information required by event functions,
semaphore functions, and mailbox functions, respectively.

B. Procedure for Calling an API

Fig.4 shows the API call sequence. The core writes the
argument into the Argument Registers and writes an API
identifier in the Command Register, (a). Next, the AAI sends
a Req API signal to the MC with an API ID signal which
indicates the API identifier, (b). When the signals are detected,
the MC begins the execution of the API, (c). After the MC
completes the execution of the API, the MC writes the return
value into the Result Register, (e). The core polls the Result
Register after the API call and it reads the value until a valid
return value is written into the Result Register by the MC, (d).

If the API execution requires context switching, information
that indicates the context switching request and the dispatched
task identifier are written in the Result Register with the
return value. The core then executes context switching using
software, (f). Specifically, the contents of the current task in
the ProcReg in the core are saved to the Data RAM and the
contents of the next task are loaded into the ProcReg.

Context Switch is neededContext Switch

is not needed

Fig. 5. IIA sequence in POHC

C. Parallel execution of core and ARTESSO HWRTOS

As mentioned in Appendix, the original ARTESSO HWR-
TOS implements not only API functions but also other RTOS
functions such as interrupt invoked API (IIA) and tick manage-
ment to offload their works from the core. When an interrupt
occurs, the IIA function invokes a selected API, which is
determined by the interrupt cause. After the IIA function the
MC executes task switch if needed. Fig.11 in the Appendix
shows the IIA offloading in the TC-HWRTOS and Fig.10 (1)
shows that the SWRTOS executes the same procedure as IIA
offloading. In the tick management function, the ARTESSO
HWRTOS implements hardware timeout-timers for each task
and if the MC detects a timer expiration, the MC moves the
task from the wait queue to the ready queue, and then the MC
executes task switch if needed.

In the SWRTOS, the user function is suspended while exe-
cuting the RTOS function. Since the RTOS functions and user
functions are both executed on a core and the user function
has to wait for return value of called API. In the original
ARTESSO HWRTOS, the user function was suspended during
the MC working in the same manner as the SWRTOS. This
method is called serial operation of a HWRTOS and a core
(SOHC). However the IIA and the tick management functions
are invoked by interrupts therefore they can be started without
invocation by user functions executing on the core, thus the
IIA and the tick management can execute in parallel with
user functions in the HWRTOS. Proposed architecture allows
parallel operation by modifying the MC. This method is called
parallel operation of a HWRTOS and a core (POHC). If the
RTOS decides that a task switching is not needed at the end of
the IIA or tick management function, the currently executing
user function continues to run, as shown in Fig.5. The POHC
improves the system performance, especially in systems where
interrupts are generated frequently such as network protocol
processing.

IV. SOC IMPLEMENTATION: R-IN32M3

This section provides a summary of the R-IN32M3 SoC[15],
which we developed as an IndCntlr to satisfy the requirements
specified in Section I. Fig.6 shows the overall configuration of
R-IN32M3. The R-IN32M3 is commercially available and the
libraries for R-IN32M3, such as the RTOS driver, and protocol
stacks, are available from Renesas Electronics web site.

R-IN Engine

CAN
(2 Ports)

LC-HWRTOS

UART
(2 Ports)

Cortex-M3
100MHz

ARTESSO
HWRTOS

E
th

e
rn

e
t

A
c

c
e

le
ra

to
r

8
0

2
.3

 2
-p

o
rt

S

w
it

c
h

CSI
(2 Ports)

Ether
PHY

Ether
PHY

I
2
C

(2 Ports)

CC-Link
(Remote Device)

Internal RAM
Instruction : 768KB

Data : 514KB

Buffer : 64KBSerial Flash I/F

Timer (4 ch)

GPIO

SRAM I/F
Master / Slave

AAI

Fig. 6. Overall configuration of R-IN32M3 SoC

Fig. 7. Test of the effect of the time tick

The R-IN32M3 provides various types of communication
ports, such as CAN and CC-Link, while two Ethernet ports
are provided for use by industrial Ethernet systems.

The R-IN Engine is a module that implements industrial
network functions. It is not a conventional simple processing
unit but it provides high performance and has high added
value, as follows.

1) LC-HWRTOS: The LC-HWRTOS comprises the AAI,
the ARTESSO HWRTOS, and the core, as mentioned in
section III. A Cortex-M3 is adopted as an ARM core.

2) 802.3 Two-port Switch: The module operates with a
daisy chain configuration using a two-port PHY in industrial
Ethernet. Two different hardware configurations are possible,
EtherCAT/slave and CC-Link IE/Field.

3) Ethernet Accelerator: The Ethernet Accelerator has
three functions for accelerating protocol processing. (i) Check-
sum execution for TCP and IP. (ii) A protocol header rear-
rangement function, which rearranges the compressed header
format into a format that the core can handle easily, and
vice versa. (iii) A buffer management function that comprises
buffer allocation and release functions. They are also imple-
mented by hardware logic.

V. PERFORMANCE EVALUATIONS

This section presents comparisons of the performance ob-
tained using TC-HWRTOS, LC-HWRTOS, and SWRTOS.

A. Evaluation Items

The RTOS performance and network performance are eval-
uated. 1) to 5) present evaluations of the RTOS performance
and 6) describes the network performance, as follows.

1) API execution time: The improvement in the execution
time with HWRTOS is evaluated. The API execution time is
measured with and without context switching for each of the
”start task,” ”release semaphore” and ”wake up task” APIs.

2) Interrupt response: The improvement in the interrupt
response with the IIA offloading is evaluated. The times are

0

0.5

1

1.5

2

2.5

w
ith

o
u

t C
S

w
ith

 C
S

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
ic

ro
s

e
c

o
n

d
s

)

S
W

R
T
O

S

S
W

R
T
O

S

L
C

-H
W

R
T
O

S

L
C

-H
W

R
T
O

S

T
C

-H
W

R
T
O

S

T
C

-H
W

R
T
O

S

with CS without CS

0

0.5

1

1.5

2

2.5

w
ith

o
u

t C
S

w
ith

 C
S

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
ic

ro
s

e
c

o
n

d
s

)

S
W

R
T
O

S

S
W

R
T
O

S

L
C

-H
W

R
T
O

S

L
C

-H
W

R
T
O

S

T
C

-H
W

R
T
O

S

T
C

-H
W

R
T
O

S

with CS without CS

0

0.5

1

1.5

2

2.5

w
ith

o
u

t C
S

w
ith

 C
S

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
ic

ro
s

e
c

o
n

d
s

)

S
W

R
T
O

S

S
W

R
T
O

S

L
C

-H
W

R
T
O

S

L
C

-H
W

R
T
O

S

T
C

-H
W

R
T
O

S

T
C

-H
W

R
T
O

S

with CS without CS

10

100

1000

10000

2200.1 2203.9 2204 2208.7 2213.5

F
re

q
u

e
n

c
y
 (

ti
m

e
s
)

Execution time (microseconds)

SWRTOS

LC-HWRTOS

SWRTOS LC-HWRTOS

Variation

Minimum

0

1

2

3

4

5

W
E

 C
T

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
ic

ro
s

e
c

o
n

d
s

)

S
W

R
T
O

S

L
C

-H
W

R
T
O

S

T
C

-H
W

R
T
O

S

3)

0

1

2

3

W
E

 C
T

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
ic

ro
s

e
c

o
n

d
s

)

S
W

R
T
O

S

L
C

-H
W

R
T
O

S

(P
O

H
C

)
T
C

-H
W

R
T
O

S

(S
O

H
C

)

2200.1 2203.9 2204 2208.7 2213.5

Execution time (microseconds)

SWRTOS

LC-HWRTOS

Variation

Minimum

6) UDP/IP Throughput4)

1)-a Start task API execution 1)-c Release semaphore API execution1)-b Wake up task API execution 2) Interrupt response

0

1

2

3

4

5

S
W

R
TO

S
n=1

S
W

R
TO

S
(n

=2
)

S
W

R
TO

S
(n

=4
)

S
W

R
TO

S
(n

=8
)

S
W

R
TO

S
(n

=1
6)

LC
-H

W
R
TO

S
n=1

,2
,4

,8
,1

6

TC
-H

W
R
TO

S
n=1

,2
,4

,8
,1

6

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
ic

ro
 s

e
c
o

n
d

s
)

Variation

Minimum

S
W

R
TO

S
 (n

=1
)

S
W

R
TO

S
 (n

=2
)

S
W

R
TO

S
 (n

=4
)

S
W

R
TO

S
 (n

=8
)

S
W

R
TO

S
 (n

=1
6)

LC
-H

W
R
TO

S

TC
-H

W
R
TO

S

(n
=1

,2
,4

,8
,1

6)

(n
=1

,2
,4

,8
,1

6)

5) Wake-up execution time

0

50

100

150

200

250

300

SWRTOS LC-HWRTOS

U
D

P
/I

P
 T

ro
u

g
h

p
u

t
(M

b
p

s
)

w/o context switch w/ context switch w/o context switch w/ context switch w/o context switch w/ context switch

Fig. 8. Evaluation Result

measured from t1 to t3 in Fig.10 (1) with SWRTOS, in Fig.11
with TC-HWRTOS and in Fig.5 with LC-HWRTOS.

3) IIA overheads: The improvement in IIA offloading with
the POHC is evaluated. In this case, the task is not switched
as the result of the API execution, which is invoked during the
IIA. The times are measured from t1 to t2 in Fig.10 (1) for
SWRTOS, and in Fig.11 for TC-HWRTOS. In LC-HWRTOS,
the time is zero is verified.

4) Influence of tick: The improvement in the real-time
response with the tick management offloading is evaluated,
i.e., the variation in the interrupt response with the tick
function. Three periodic tasks are performed, where each cycle
is set to 4, 10, or 15 ms. Each task process executes 20,000
loops, which execution time is about 2.2 ms. As shown in
Fig.7, the execution time of the 4-ms periodic task is measured.
If there are no influences on the tick, the execution time is
about 2.2 ms and fixed.

5) Wake-up execution time: The improvement in the real-
time performance in hardware implementation is evaluated.
The execution time of the API is measured if n tasks are
waiting for their timeout in the queue and one of them
is woken by the wake-up task API. The measurements are
executed 1 million times for each n, and the maximum and
minimum times for each n are obtained.

6) UDP/IP throughput: The UDP/IP throughput is evaluated
using each LC-HWRTOS and SWRTOS.

B. Experimental Setup

The performance is evaluated with SWRTOS, LC-
HWRTOS, and TC-HWRTOS which are API-compatible.
With SWRTOS and the LC-HWRTOS, the R-IN32M3 evalua-
tion board is used. The operational clock of both the core and
the HWRTOS are set to 100 MHz. In the SWRTOS evaluation,
the HWRTOS function of the R-IN32M3 is disabled. In
the TC-HWRTOS, the Verilog source code of the original

ARTESSO system shown in the Appendix is used and the
time is obtained by the Verilog RTL simulator.

In the network performance evaluation related to the SWR-
TOS and the LC-HWRTOS, the evaluation environment de-
scribed above is employed and the UDP/IP protocol stack is
implemented on it, where the UDP/IP throughput is measured
in both environments.

C. Evaluation Results

The following section presents the evaluation results for the
experiments described in the previous section.

For 1), Fig.8 1) a–c show the execution time results with
the three APIs. Without context switching, the execution times
with the LC-HWRTOS are 1.7 to 2.9 times faster compared
with the SWRTOS. With context switching, however, the exe-
cution times with the LC-HWRTOS are 1.4 to 1.5 times faster
compared with the SWRTOS. The results are better ”without
context switching” with the LC-HWRTOS because only pre-
and post-API software processing are needed in ”without”
case, but context-switching software is added process in ”with”
case. As mentioned in Section II, execution time in the TC-
HWRTOS is the fastest.

For 2), Fig.8 2) shows the results of the interrupt response
evaluation. The execution time with the LC-HWRTOS is 2.3
times faster compared with that with the SWRTOS.

For 3), Fig.8 3) shows the IIA overheads. With the LC-
HWRTOS, the IIA function is offloaded from the core and
context switch is not executed thus the IIA overheads are zero.
The results demonstrate the system performance is improved
by POHC method, because the core can keep to execute in
case of a context switch is not needed, as shown in Fig.5.

For 4), Fig.8 4) shows the effects of the time tick man-
agement function on real-time processing. The evaluation is
only executed in the SWRTOS and the LC-HWRTOS because
the performance of TC-HWRTOS is almost same as that of

LC-HWRTOS. The horizontal axis indicates the execution
time required for the 4-ms periodic task. The execution time
required for the 4-ms periodic task in the SWRTOS varies
according to the periodic interrupt and the maximum range
of variation is 9.6 ms. By contrast, the execution time in
the LC-HWRTOS is always 2.2001 ms. These results show
that real-time processing is delayed by a maximum of 9.6
ms by tick management function with the SWRTOS, whereas
the process is not delayed with the LC-HWRTOS. Therefore,
the LC-HWRTOS is advantageous during real-time processing
because a task that is invoked by an interrupt can start at a
precise time.

For 5), Fig.8 5) shows the execution time of the wake
up task when some tasks are waiting for timeouts. With
the SWRTOS, the maximum execution time and its variation
increase according to n. When n is 16, the variation is 1.04
µs. By contrast, the execution time is always fixed regardless
of n with the LC-HWRTOS. The execution time with the LC-
HWRTOS is 2.6 times faster compared with the SWRTOS
when n is 16. These results show that the wake up task
execution time varies according to the internal conditions
in the SWRTOS, whereas the time does not depend on the
internal conditions in the LC-HWRTOS. Therefore, the LC-
HWRTOS is advantageous for real-time processing because a
task can wake up at a precise time in the LC-HWRTOS.

For 6), Fig.8 6) shows the UDP/IP throughput results where
both platforms are exactly the same, except for the RTOS. The
results indicate that the performance is improved by 1.67 times
only when the SWRTOS is replaced by the LC-HWRTOS. The
results also show that the network load decreased by 40% with
the LC-HWRTOS, thus LC-HWRTOS would be effective in
industrial network systems.

VI. RELATED WORK

Various techniques have been proposed for improving the
performance of RTOSs, some of which implement the RTOS
functions partially in hardware [6-11]. Others implement all
of the functions of the RTOS in hardware [1-5]. Previous
studies have shown that the performance of the HWRTOS
was several times faster than that of the SWRTOS. Some
of them adopt ARM core, however, they implemented non-
standardized and limited number of APIs, and they only
provided several or several tens of queues because they could
not implement a large number of queues in small volume
hardware, therefore insufficient objects could be provided.
Consequently, their methods did not satisfy the requirements of
industrial network systems. Furthermore, they have not been
commercially available as a SoC. By contrast, the proposed
architecture provides 41 ITRON[13] standard APIs, which are
sufficient for utilization in the IndCntlrs. ITRON is a RTOS
standard and widely used in Japan. The proposed architecture
also provides several thousand queues at low cost using the
novel Virtual Queue technology, as described in the Appendix.
Therefore, the proposed architecture satisfies the requirements
of industrial network systems. The SoC based on the proposed

architecture is the world’s first commercial product which
implements ARM and RTOS in hardware.

VII. CONCLUSION

Recently, faster network systems have been deployed for
industrial networks using Ethernet. However, the increased
protocol processing load affects real-time processes such as
motor control. Thus, we developed R-IN32M3 SoC to over-
come this problem, which can be used in industrial network
systems. The requirements of industrial network systems are:
(1) reducing the load of network protocol processing, (2)
improved real-time capability, (3) multi-protocol support, (4)
adoption of ARM cores, and (5) low costs and low power
consumption. To satisfy these requirements, Corex-M3 was
adopted as the core and the LC-HWRTOS was adopted as
the RTOS. Our evaluations showed that the LC-HWRTOS
operated faster than the SWRTOS. Our experimental results
showed that the UDP/IP throughput was increased by 1.67
times by replacing the SWRTOS with the LC-HWRTOS and
the network load decreased by 40%.

REFERENCES

[1] Lindh L., ”Fastchart – a fast time deterministic CPU and hardware based
real-time kernel,” in Proc. of Euromicro Workshop on Real Time Systems,
pp. 36–40, Jun, 1991

[2] Adomat J., Furunas J., Lindh L., Starner J., ”Real-time kernel in hard-
ware RTU: a step towards deterministic and high-performance real-time
systems,” in Proc. of the 8th Euromicro Workshop, pp. 164–168, Jun
1996

[3] Nordstrom S., Lindh L., Johansson L., Skoglund T., ”Application specific
real-time microkernel in hardware,” in Proc. of Real Time Conference,
2005.

[4] Samuelsson T., Åkerholm M., Nygren P., Johan Stärner J., Lindh L.,
”Comparison of multiprocessor real-time operating systems implemented
in hardware and software,” in Proc. of Int’l Workshop on Advanced Real-
Time Operating System Services (ARTOSS’03), 2003.

[5] Nakano T., Utama A., Itabashi M., Shiomi A., Imai M., ”Hardware
implementation of a real-time operating system,” in Proc. of 12th TRON
Project International Symposium (TORN’95), pp. 34044, 1995.

[6] Kohout P., Ganesh B., Jacob B., ”Hardware support for real-time op-
erating systems,” in Proc. of the 1st International Conference on Hard-
ware/Software Codesign and System Synthesis, pp. 45–51, Oct. 2003

[7] Chandra S., Regazzoni F., Lajolo M., ”Hardware/software partitioning of
operating systems: a behavioral synthesis approach,” in Proc. of the 16th
ACM Great Lakes Symposium on VLSI, pp. 324–329, 2006

[8] Parisoto A., Souza A. Jr, Carro L., Pontremoli M., Pereira C., Suzim A.,
”F-Timer: dedicated FPGA to real-time systems design support,” in Proc.
of 9th Euromicro Workshop on Real-Time Systems, pp. 35–40, 1997

[9] Mooney III V., Lee J., Daleby A., Ingstrom K., Klevin T., Lindth L.,
”A comparison of the RTU hardware RTOS with a hardware/software
RTOS,” in Proc. of Design Automation Conference, 2003, pp. 683–688.

[10] Mooney III V.J., Blough D.M., ”A hardware-software real-time oper-
ating system framework for SoCs,” IEEE Design & Test of Computers,
44–51, 2002.

[11] Mooney III. V., ”Hardware/software partitioning of operating sys-
tems,” in Proc. of Design Automation and Test in Europe Conference
(DATE’03), 2003, pp. 338–339.

[12] Maruyama N., Ishihara T, Yasuura H., ”An RTOS in hardware for
energy efficient software-based TCP/IP,” Proc. of IEEE Symposium on
Application Specific Processors (SASP), 2010, pp. 13–18.

[13] TRON ASSOCIATION, ”µITRON4.0 Specification,” 1999.
[14] Felser M., ”Real-time Ethernet – industry prospective,” Proceedings of

the IEEE, Volume 93, Issue 6, June 2005, pp. 1118–1129.
[15] Renesas Electronics, ”R-IN32M3-Series Data Sheet,” Dec 9, 2013.

APPENDIX

This appendix describes the original ARTESSO system [12],
which we developed using the ARTESSO HWRTOS, as shown
in Fig.9.

A. Summary of the original ARTESSO system

The original ARTESSO system comprises an ARTESSO
HWRTOS, a Register Save Memory, and an ARTESSO core,
as shown in Fig.9. They are configured as a TC-HWRTOS.
The ARTESSO HWRTOS conforms with ITRON specifica-
tions [13] and it supports 41 ITRON APIs. The supported APIs
are listed in Table II. The Register Save Memory is used to
maintain the contents of the ProcReg on a task-by-task basis.
The ARTESSO Core is a proprietary 32-bit RISC processor,
which has a special interface that connects with the ARTESSO
HWRTOS in a tightly coupled manner.

B. Features of the original ARTESSO system

The following are the features of the original ARTESSO
system.

1. Configuration of TC-HWRTOS.
2. Several thousand queues in hardware at a low cost based

on an innovative idea called Virtual Queue.
3. An interrupt invoked API (IIA) offloading function that

executes interrupt processing in hardware, which improves the
performance of the interrupt response.

4. A tick management offloading function that removes
the software tick process, which also improves the interrupt
response.

1) TC-HWRTOS: Fig.9 shows the architecture of the origi-
nal ARTESSO system, which is configured as a TC-HWRTOS.
The Main Controller (MC) is implemented by a hardware
state machine that executes all of the API call processes. The
Task Control Block maintains the management information
related to all of the tasks, such as the ”current state” and
”task priority.” The Virtual Queue module implements all of
the queues used by the RTOS. The Event Control Block,
the Semaphore Control Block, and the Mail Box Control
Block maintain and manage the information required by
event functions, semaphore functions, and mailbox functions,
respectively.

Next, we describe the API call procedure. The arguments
and return values of the APIs are handed over using some of
the general purpose registers in the ProcReg. When the core
decodes an API call assembler instruction, the core changes
the Req API signal to 1 and indicates an API identifier by
sending the API ID signal to the MC. If the MC detects
this signal, it changes the hold signal to 1 and commences
API processing according to the API ID signal. If the API
has arguments, the MC refers to the specific registers in the
ProcReg that are assigned to the arguments. When the MC
completes the execution of the API process, it writes the return
value in the specific register of the ProcReg that is assigned to
the return value and it then changes the hold signal from 1 to
0, thereby indicating the completion of the process to the core.

ARTESSO
Core

for
Task 1

for
Task n

Interrupt
Controller

M
a

in
 C

o
n

tr
o

ll
e

r
(M

C
)

S
e

le
c

to
r

V
ir

tu
a

l
Q

u
e

u
e

PC

SP

Flags

R0

Rm

Registers
Save

Memory ARTESSO HWRTOS

Task Management Block

ProcReg

Req_API

API_ID

Interrupt 1

Interrupt k

Hold

Held

for Task 1

for Task 2

for Task n

Task Control
Block

RSM

Control

Processor
Register Link

Event Control Block

Semaphore Control Block

Mail Box Control Block

Fig. 9. Original ARTESSO system (TC-HWRTOS)

TABLE II
Supported APIs

task start, exit, terminate, change priority, get task ID,
sleep, wakeup, release wait

create, delete, wait, set, clear, poll

semaphore create, delete, wait, release

mailbox create, delete, send, receive

cpu lock, unlock

dispatch disable, enable

ready queue rotate

system timer set, get

If the core recognizes the hold signal transition, it restarts and
fetches from the next program counter.

If a context switch is needed after the completion of API
execution, the MC saves the contents of the ProcReg in
the Register Save Memory and loads the next task contents
into the ProcReg from the Register Save Memory. Next, the
MC changes the Hold signal from 1 to 0, which indicates
completion to the core and the core then restarts the fetch
process again.

In the interrupt procedure, interrupt signals enter the Inter-
rupt Controller in the ARTESSO HWRTOS. If the MC detects
an interrupt through the Interrupt Controller, the MC changes
the Hold signal to 1 to stop the core. When the core stops, the
Held signal is changed to 1. If the MC detects the Held signal
transition, it saves the contents of the ProcReg to the Register
Save Memory and loads the ISR contents from the Registers
Save Memory into the ProcReg. Next, the MC changes the
Hold signal from 1 to 0 to indicate the completion of the
context switch to the core and the then core restarts the fetch
process according to the ISR register set.

As mentioned above, the original ARTESSO system imple-
ments the TC-HWRTOS using a special interface with a pro-
cedure between the ARTESSO HWRTOS and the ARTESSO

User
Functions

User
Functions

MC

ISR process

RTOS Function

(1) SWRTOS

interrupt genetarion

interrupt genetarion

- Store the old task registers

- Start ISR

- API Processingt1 t2 t3

- Terminate itself

- Terminate ISR

- Context switch
as necessary

- Find out Interrupt cause

- Issue API according to
the cause

532 - 1,456 cycles

17 cycles with context switch
13 cycles without context switch

Task A

Task A Task B

Task B

Fig. 10. ISR and IIA operations

Function

Fig. 11. IIA offload execution

core.
2) Virtual Queue: In general, RTOSs require many queues,

i.e., several thousand queues, since they are needed for each
instance of an object. To implement an RTOS in hardware,
the queues should also be implemented in hardware. However,
it is very expensive to implement many queues in hardware
using conventional technology such as hardware FIFOs. Thus,
we propose the innovative idea of a Virtual Queue, which is
an information compression technique with reversibility that
produces a large number of queues with a small hardware
volume.

3) IIA Offloading: The IIA offloading function is im-
plemented in addition to the conventional interrupt service
routine (ISR) in the ARTESSO HWRTOS. The IIA offloading
function invokes a selected API based on the cause of the
interrupt. Fig.10 (1) shows that the SWRTOS executes the
same procedure as IIA offloading. The following description
provides specific details of the procedure. When an interrupt
is generated, the SWRTOS starts and it saves the current
task register contents in the ProcReg, before loading the ISR
register contents into the ProcReg and starting the ISR. The
ISR determines the cause of the interrupt and invokes an API
based on the cause. After the completion of API execution, the
SWRTOS terminates the ISR and the SWRTOS then replaces

TABLE III
RTOS execution time

System Call Dispatch SWRTOS
ARTESSO
HWRTOS

(TC-HWRTOS)

Sleep Task Yes 628 10

Wakeup Task Yes 496 10

Change Priority Yes 541 11

Receive from Mailbox No 224 7

Receive from Mailbox Yes 591 11

Send to Mailbox No 360 8

Send to Mailbox Yes 541 11

Wait Semaphore No 216 6

Wait Semaphore Yes 558 9

Release Semaphore No 344 7

Release Semaphore Yes 536 11

 Unit : Cycles

the ISR contents in the ProcReg with the new task register
contents.

IIA offloading can replace the software ISR process, as
mentioned above, therefore all of the interrupt processes can
be implemented in hardware. Thus, the interrupt response is
improved dramatically, as shown in Fig.10 (2) and Fig.11.

4) Tick management Offloading: The SWRTOS uses a tick
process to implement timeout processing for tasks. The tick
process is woken up by a periodic interrupt and it decrements
each timeout counter. If it detects a timeout, it removes the
task from the wait queue and appends it to the ready queue.
As mentioned above, the tick process is a critical process and
interrupts are inhibited during the process, which results in
fluctuations in the interrupt latency. By contrast, the ARTESSO
HWRTOS implements hardware timeout counters on a task-
by-task basis and the counter value is decremented by its
hardware. If the counter reaches zero, the MC is started, which
removes the task from the wait queue and appends the task
to the ready queue. Next, the MC executes context switching
if necessary. Thus, the ARTESSO HWRTOS does not require
the tick process in software. This results in a drastic reduction
in fluctuations in the interrupt latency.

C. Performance of the original ARTESSO system

Table III compares the performance of commercial SWR-
TOS and the ARTESSO HWRTOS, which has the TC-
HWRTOS configuration. The RTOS performance of the orig-
inal ARTESSO system was several tens times faster than that
of SWRTOS. The interrupt response using IIA offloading was
38 to 104 times faster than that of the SWRTOS, as shown in
Fig.10.

